Observations of forest stand top height and mean height from interferometric SAR and LIDAR over a conifer plantation at Thetford Forest, UK
نویسندگان
چکیده
Estimates of forest stand mean height using airborne LiDAR (Light Detection And Ranging) instruments have been previously reported with accuracies comparable to traditional ground-based measurements. However, the small area covered by a LiDAR sensor in a single aircraft overpass is a significant hindrance for large scale forest inventories. In comparison, airborne interferometric Synthetic Aperture Radar (InSAR) systems are also able to make estimates of surface height, but the swath coverage is often far greater, typically five or ten times that of the LiDAR coverage. A set of interferometric data takes was acquired by the ESAR airborne sensor over a managed pine plantation at Thetford Forest, UK. Scattering phase centre height estimates were made from two single-pass X-band acquisitions and polarimetric repeat-pass L-band acquisitions and compared with height estimates made from a separate LiDAR acquisition. The relationship between the scattering phase centre heights and stand top height is described, and the accuracy of stand top height estimates estimated from InSAR and LiDAR is quantified by the root mean square error (rmse). General yield class models by the Forestry Commission (UK) were used to estimate stand top height from a GIS database used for forest management. The longer wavelength L-band radiation penetrates deeper into the canopy than X-band and the scattering phase centre height is affected by both forest structural parameters (canopy density, understorey and gaps) and sensor parameters (look-angle and reduced coherence through temporal and volume decorrelation). Consequently, a simple translation of scattering phase centre height into stand top height gives noisy results for L-band, with observed rmse values between ±3.1m in the near range and ±6.4m in the far range. The X-band based top height estimates are more accurate with rmse between ±2.9m in the near and ±4.1m in the far range, which can be further reduced by an empirical incidence angle correction. Stand top height estimates from LiDAR achieved an rmse of only ±2.0m. The X-band scattering phase centre heights have also been related to mean stand height and are comparable with heights observed from the LiDAR sensor and field measurements. An rmse of ±2.5 m for the mean stand height estimates based the X-band data set was found. Finally, we briefly discuss error propagation from the use of a terrain model, here provided by the Ordnance Survey.
منابع مشابه
Interferometric SAR Coherence Models for Characterization of Hemiboreal Forests Using TanDEM-X Data
In this study, four models describing the interferometric coherence of the forest vegetation layer are proposed and compared with the TanDEM-X data. Our focus is on developing tools for hemiboreal forest height estimation from single-pol interferometric SAR measurements, suitable for wide area forest mapping with limited a priori information. The multi-temporal set of 19 TanDEM-X interferometri...
متن کاملForest Height Estimates for Boreal Forest Using L- and X-band Polinsar and Hutscat Scatterometer
In this paper we present a airborne polarimetric interferometric SAR measurement campaign, carried out in Finland in 2003. The main aim of the FinSAR campaign was to validate POLinSAR tree height retrieval algorithms for boreal forest and it was arranged jointly by Helsinki University of Technology (TKK) and German Aerospace Center (DLR) Microwaves and Radar Institute. During the campaign airbo...
متن کاملEstimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data
On the basis of the Gaussian vertical backscatter (GVB) model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM) from multi-baseline (MB) P-band polarimetric-interferometric radar (PolInSAR) data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizati...
متن کاملSpatial variability and estimation of tree attributes in a plantation forest in the Caspian region of Iran using geostatistical analysis
This research was conducted to investigate spatial variability and estimate tree attributes in a plantation forest in the Caspian region of Iran using geostatistical analysis. Sampling was performed based on a 50m?125m systematic grid in a maple stand (Acer velutinum Boiss) 18 years of age using circular samples of 200m2 area. Totally, 96 sample plots were measured in 63 hectares and 14.25 he...
متن کاملSPOT-5 Spectral and Textural Data Fusion for Forest Mean Age and Height Estimation
Precise estimation of the forest structural parameters supports decision makers for sustainable management of the forests. Moreover, timber volume estimation and consequently the economic value of a forest can be derived based on the structural parameter quantization. Mean age and height of the trees are two important parameters for estimating the productivity of the plantations. This research ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009